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Abstract
The Poincaré compactification and the symplectic reduction methods are first
reviewed and then used to study the behaviour at infinity of the MIC (McIntosh–
Cisneros)–Kepler problem at positive energies. The hyperbolic orbits leave
the unstable equilibrium point set at infinity and tend eventually to the stable
equilibrium point set at infinity. Both of these equilibrium point sets are
diffeomorphic with S2, the unit sphere in R3. The hyperbolic orbits determine
a map of the unstable equilibrium point set to the stable equilibrium point set in
such a manner that the initial point (or the limit point as t → −∞) of an orbit
is mapped to its final point (or the limit point as t → ∞). This map is found
explicitly as a rotation matrix which depends on the energy and the angular
momentum of the orbits.

PACS numbers: 0210H, 0210S, 0220, 1130C

1. Introduction

Like the Kepler problem, the MIC (McIntosh–Cisneros)–Kepler problem, an extension of the
Kepler problem [1], has orbits of conic sections in the configuration space R3. According
to whether the energy is positive, zero, or negative, orbits are hyperbolae, parabolae, or
ellipses. If one takes infinity into account, the hyperbola can be viewed as a curve leaving
from one equilibrium point at infinity to another equilibrium point at infinity. This paper
deals with the infinity of the MIC–Kepler problem through a Poincaré compactification [2–4]
of polynomial vector fields. Here the Poincaré compactification is a topological method for
forming the Poincaré sphere Sn by piecing together two copies of Rn at infinity through
the central projection in such a manner that the equator of Sn corresponds to the infinity of
Rn. Polynomial vector fields on Rn can then be ‘function-collinearly’ extended to vector
fields defined on the whole space Sn. This process is called the Poincaré compactification of
polynomial vector fields. One cannot apply this compactification method to the MIC–Kepler
problem in its original form, since the Hamiltonian vector field for the MIC–Kepler problem
is not a polynomial vector field. However, the Poincaré compactification and the symplectic
reduction method [5] applied to a certain polynomial Hamiltonian are put together to provide
a method for treating the infinity of the MIC–Kepler problem with a positive energy. As a
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result, one can assume that hyperbolic orbits leave from unstable equilibrium points at infinity
and eventually tend to stable equilibrium points at infinity. Thus hyperbolic orbits with a fixed
energy value and a fixed angular momentum value determine a map of the stable equilibrium
point set at infinity to the unstable equilibrium point set at infinity in such a manner that the
initial point (or the limit point as t → −∞) of an orbit is mapped to the final point (or the
limit point as t → ∞). This map proves to be expressed as a rotation matrix:(

I +

√
2h

κ
R(J)

)−1 (
I −

√
2h

κ
R(J)

)
(1.1)

where h is a positive energy value, κ is a positive constant, and the R(J) ∈ so(3) is the
anti-symmetric matrix associated with the angular momentum J .

This paper is organized as follows: sections 2 and 3 contain a review of the Poincaré
compactification of polynomial vector fields and of the MIC–Kepler problem, respectively.
The MIC–Kepler problem is formulated as a reduced Hamiltonian system of the conformal
Kepler problem of four degrees of freedom [6, 7]. If the energy is fixed at a positive number,
the conformal Kepler problem is replaced by a repulsive oscillator which has the same
trajectories as the conformal Kepler problem within a change of parameters. In section 4,
Poincaré compactification is applied to the repulsive oscillator to obtain a system on the
sphere S8. In section 5, trajectories of the conformal Kepler problem with a positive energy
project to hyperbolic trajectories of the MIC–Kepler problem with a positive energy. The
compactification procedure now allows one to deal with trajectories at infinity in an explicit
manner. By the use of constants of motion for the MIC–Kepler problem along with the
compactification procedure, one can find a map of the unstable equilibrium point set at infinity
to the stable equilibrium point set at infinity, which is given by the rotation matrix (1.1).

2. A review of the Poincaré compactification

According to [3, 4], we make a brief review of the Poincaré compactification of polynomial
vector fields. Let X = (P1, P2, . . . , Pn) be a polynomial vector field on Rn along with m =
max{degP1, . . . , degPn}. We consider the Poincaré sphere Sn = {y ∈ Rn+1| ∑n+1

i=1 y
2
i = 1}

with the hyperplane � = {y ∈ Rn+1| yn+1 = 1} tangent to Sn at the north pole. The � is
identified with Rn on which the polynomial vector field X is defined. Let H + and H− be the
open northern and southern hemispheres of Sn, respectively. Then the central projection of Sn

to Rn defines the maps

ψ+ : Rn → H + ψ+(x) = 1

�(x)
(x1, x2, . . . , xn, 1)

ψ− : Rn → H− ψ−(x) = − 1

�(x)
(x1, x2, . . . , xn, 1)

�(x) =
(

1 +
n∑

j=1

x2
j

)1/2

.

(2.1)

The equator Sn−1 = {y ∈ Sn|yn+1 = 0} of the Poincaré sphere corresponds to the infinity
of Rn. Clearly, one has Sn = H + ∪ H− ∪ Sn−1. The maps ψ+ and ψ− induce a vector
field X̂ on H + ∪ H− through X̂(y) = (Dψ+)xX(x) for y = ψ+(x) ∈ H + and through
X̂(y) = (Dψ−)xX(x) for y = ψ−(x) ∈ H−, where Dψ+ and Dψ− denote the differential
map of ψ+ and of ψ−, respectively. A straightforward calculation provides

X̂(y) =
(
yn+1

n∑
j=1

(δij − yiyj )Pj ,−y2
n+1

n∑
j=1

yjPj

)
for y ∈ H + ∪ H− (2.2)
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where Pj is expressed as Pj (
y1

yn+1
, . . . ,

yn
yn+1

). A question now arises as to whether the X̂ can
be extended continuously to a vector field defined on the whole sphere Sn. For a possible
extension, X̂(y) has to have a unique finite value as y ∈ H + ∪ H− tends to each point of
the equator. Unfortunately, there is no natural way to obtain such finite values for X̂(y) in
general. However, if Pj are polynomials with m = max{degP1, . . . , degPn}, we can define
an extendable vector field X̃(y) by a function-collinear transformation of X̂(y):

X̃(y) = ym−1
n+1 X̂(y) for y ∈ H + ∪ H−. (2.3)

In fact, since X̃(y) takes the form

X̃(y) =
( n∑

j=1

(δij − yiyj )P̃j ,−yn+1

n∑
j=1

yj P̃j

)
(2.4)

with

P̃j (y1, . . . , yn, yn+1) := ymn+1Pj

(
y1

yn+1
, . . . ,

yn

yn+1

)
(2.5)

and since P̃j are all homogeneous polynomials of degreem in y1, . . . , yn, yn+1, each component
of X̃(y) has indeed a unique finite value as y tend to each point of the equator. Furthermore,
equation (2.4) shows that X̃(y) is tangent to the equator Sn−1, which implies that the equator is
an invariant set under the flows generated by X̃(y). Both H + and H− are, of course, invariant
sets. Thus we have observed that X̃ is defined on the whole sphere Sn in a natural manner. We
also note that the vector fields X̂ and X̃ share the same flows in H + ∪ H− within a change of
parameters; that is, flows defined by dy

dτ = X̂(y) and by dy
dt = X̃(y) are related by the change

of parameters dτ
dt = ym−1

n+1 . The vector field X̃ on Sn is called the Poincaré compactification of

X = (P1, . . . , Pn) on Rn (see also [2]). It is worth noting here that X̃ restricted on H + ∪H−

is pulled back by ψ+ and ψ− to [1 +
∑n

j=1 x
2
j ]−

m−1
2 X(x), the norm of which is of order O(|x|)

as |x| → ∞ because of m = max{degP1, . . . , degPn}. Thus we obtain the ‘compactified’
differential equations on Sn:

dyi
dt

=
n∑

j=1

(δij − yiyj )P̃j (y1, . . . , yn, yn+1) i = 1, . . . , n

dyn+1

dt
= −yn+1

n∑
j=1

yj P̃j (y1, . . . , yn, yn+1).

(2.6)

In the case of the polynomial Hamiltonian vector field XH associated with a polynomial
H of degree m + 1 in x1, . . . , xd, xd+1, . . . , x2d with n = 2d, one has

Pk = ∂H

∂xd+k
Pd+k = −∂H

∂xk
k = 1, . . . , d. (2.7)

Then the corresponding polynomials (2.5) are shown to take the form

P̃k = ∂H̃

∂yd+k
P̃d+k = −∂H̃

∂yk
k = 1, . . . , d (2.8)

along with

H̃ (y1, . . . , yn, yn+1) = ym+1
n+1 H

(
y1

yn+1
, . . . ,

yn

yn+1

)
. (2.9)

Note here that H̃ is a homogeneous polynomial of degree m + 1 in y1, . . . , yn, yn+1. Hence
equation (2.4) with P̃ k and P̃ d+k given by (2.7) provides the Poincaré compactification X̃H



1716 T Iwai

of XH . It should be noted here that X̃H does not need to be the Hamiltonian vector field
associated with H̃ , while X̂H may be viewed as a Hamiltonian vector field, if the standard
symplectic form on R2d is pushed forward to H + ∪ H− by ψ+ and ψ−. Along with (2.8)
and (2.9), equation (2.6) is brought into the form

dyk
dt

= ∂H̃

∂yd+k
+ λyk

dyd+k

dt
= −∂H̃

∂yk
+ λyd+k k = 1, . . . , d

dy2d+1

dt
= λy2d+1

(2.10)

with

λ =
d∑

j=1

(
yd+j

∂H̃

∂yj
− yj

∂H̃

∂yd+j

)
. (2.11)

Equation (2.10) shows that the infinity, the equator S2d−1 determined by y ∈ S2d and
y2d+1 = 0, is an invariant set of the flow of X̃H . To consider the flow at infinity, we express
the polynomial Hamiltonian H as H = H0 + H1 + · · · + Hm+1, where H! is the homogeneous
part of H of degree ! for ! = 0, 1, . . . , m + 1. Then one has H̃ = Hm+1 at infinity, so that
equation (2.10) restricted at infinity becomes

dyk
dt

= ∂Hm+1

∂yd+k
+ λyk

dyd+k

dt
= −∂Hm+1

∂yk
+ λyd+k

k = 1, . . . , d (2.12)

with

λ =
d∑

j=1

(
yd+j

∂Hm+1

∂yj
− yj

∂Hm+1

∂yd+j

)
. (2.13)

From equation (2.10), we also observe that the level set H̃−1(0) is an invariant set of X̃H . In
fact, on account of (2.10) and the homogeneity of H̃ , one obtains

dH̃

dt
= (m + 1)λH̃ (2.14)

which shows that H̃−1(0) is an invariant set.

Proposition 1. A polynomial vector field X on Rn is Poincaré compactified so as to be
a vector field on Sn. In particular, a polynomial Hamiltonian vector field on R2d is
Poincaré compactified to give rise to equations of motion (2.10) on S2d , which are no longer
Hamilton’s equations of motion, though the Hamiltonian H is extended to a function H̃ on
Sn. Furthermore, the level set H̃−1(0) is an invariant set of the flows determined by (2.10),
so that one can asymptotically approach infinity through H̃−1(0), if H̃−1(0) has a non-empty
intersection with the equator of S2d .

3. A review of the MIC–Kepler problem

In this section, we make a brief review of the MIC–Kepler problem [6, 7], which is defined
through the reduction method [5]. Let Ṙ4 := R4 − {0} be the configuration space with the
Cartesian coordinates ξj , j = 1, . . . , 4, and T ∗Ṙ4 ∼= Ṙ4 ×R4 be the cotangent bundle of Ṙ4
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with the Cartesian coordinates (ξj , ηk). The standard symplectic form dθ on T ∗Ṙ4 is given
by

dθ =
4∑

j=1

dηj ∧ dξj . (3.1)

A U(1) ∼= SO(2) action on Ṙ4 is defined through

(ξ1 + iξ2, ξ3 + iξ4) → eit/2(ξ1 + iξ2, ξ3 + iξ4)

(η1 + iη2, η3 + iη4) → eit/2(η1 + iη2, η3 + iη4)
(3.2)

where i = √−1. This action is clearly symplectic. The associated momentum map is then
given by

((ξ, η) = 1
2 (−ξ2η1 + ξ1η2 − ξ4η3 + ξ3η4). (3.3)

According to the reduction procedure, we take a momentum manifold (−1(µ) for µ ∈ R

fixed. For µ �= 0, (−1(µ) is a manifold. The reduced manifold is then defined to be a factor
space, Pµ := (−1(µ)/U(1). We denote the projection map by πµ:

πµ : (−1(µ) −→ Pµ := (−1(µ)/U(1). (3.4)

The space Pµ is diffeomorphic with T ∗Ṙ3 ∼= Ṙ3 ×R3, where Ṙ3 = R3 −{0}. The projection
πµ is realized as

q1 = 2(ξ3ξ1 + ξ4ξ2)

q2 = 2(−ξ4ξ1 + ξ3ξ2)

q3 = ξ 2
1 + ξ 2

2 − ξ 2
3 − ξ 2

4

p1 = 1

2r
(ξ3η1 + ξ4η2 + ξ1η3 + ξ2η4)

p2 = 1

2r
(−ξ4η1 + ξ3η2 + ξ2η3 − ξ1η4)

p3 = 1

2r
(ξ1η1 + ξ2η2 − ξ3η3 − ξ4η4)

(3.5)

where

r =
4∑

j=1

ξ 2
j =

√√√√ 3∑
k=1

q2
k . (3.6)

Let ιµ : (−1(µ) → T ∗Ṙ4 be the inclusion map. Then the reduced symplectic form ωµ on Pµ

is determined through ι∗µdθ = π∗
µωµ, and found to be expressed as

ωµ =
3∑

k=1

dpk ∧ dqk − µ

r3
(q1 dq2 ∧ dq3 + q2 dq3 ∧ dq1 + q3 dq1 ∧ dq2). (3.7)

Thus (T ∗Ṙ4, dθ) reduces to (T ∗Ṙ3, ωµ).
The Hamiltonian system (T ∗Ṙ4, dθ,H) with H defined as

H = 1

8r

4∑
j=1

η2 − κ

r
(3.8)

is called the conformal Kepler problem, where κ is a positive constant. This system is reduced
to the Hamiltonian system (T ∗Ṙ3, ωµ,Hµ), called the MIC–Kepler problem, where Hµ is
determined through H ◦ ιµ = Hµ ◦ πµ, and expressed as

Hµ = 1

2

3∑
k=1

p2
k − κ

r
+
µ2

2r2
. (3.9)
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The conformal Kepler problem has the following constants of motion:

F1 = 1
2 (ξ1η4 − ξ4η1 + ξ3η2 − ξ2η3)

F2 = 1
2 (ξ1η3 − ξ3η1 + ξ2η4 − ξ4η2)

F3 = 1
2 (ξ1η2 − ξ2η1 + ξ4η3 − ξ3η4)

G1 = 1
4 (η1η3 + η2η4) − 2(ξ1ξ3 + ξ2ξ4)H

G2 = 1
4 (η2η3 − η1η4) − 2(ξ2ξ3 − ξ1ξ4)H

G3 = 1
8 (η

2
1 + η2

2 − η2
3 − η2

4) − (ξ 2
1 + ξ 2

2 − ξ 2
3 − ξ 2

4 )H.

(3.10)

These are SO(2) invariant, so that they project to functions on the reduced phase space T ∗Ṙ3.
The reduced functions Jk andAk determined through Jk ◦πµ = Fk ◦ ιµ, Ak ◦πµ = Gk ◦ ιµ, k =
1, 2, 3, turn out to be expressed as

J = q × p +
µ

r
q A = J × p +

κ

r
q. (3.11)

Let { , } and { , }µ denote the Poisson brackets determined on T ∗Ṙ4 by dθ and on T ∗Ṙ3 byωµ,
respectively. LetKµ andLµ be the reduced function ofK andL, respectively: K◦ιµ = Kµ◦πµ,
L ◦ ιµ = Lµ ◦ πµ. Then one can show that

{K,L} ◦ ιµ = {Kµ,Lµ}µ ◦ πµ. (3.12)

Since {Fk,H } = {Gk,H } = 0, formula (3.12) applied to Fk and Gk implies that Jk and Ak are
constants of motion for the MIC–Kepler problem; {Jk,Hµ}µ = {Ak,Hµ}µ = 0, k = 1, 2, 3.
In analogy to the Kepler problem, the constants of motion J and A are called the angular
momentum and the Runge–Lenz vector, respectively. It is to be noted here that the J has
an excess term, µ

r
q, in comparison with the ordinary angular momentum. This is because

the symplectic form ωµ also has an excess term, which plays the role of a magnetic field. If
µ = 0, these excess terms vanish, and the MIC–Kepler problem becomes the ordinary Kepler
problem.

As is well known, one has |J |2 � µ2 from (3.11). If |J |2 > µ2, the orbits of the MIC–
Kepler problem in the configuration space Ṙ3 are conic sections [1]; they are intersections of the
cone determined by J ·q/r = µ and the plane perpendicular to the constant vector −µA+κJ .
These conic sections are ellipses, parabolae, or hyperbolae, according to whether the energy
is negative, zero, or positive. If |J |2 = µ2, one has q × p = 0, so that −µA + κJ = 0. In this
case, the orbits are in straight lines through the origin.

Proposition 2. The conformal Kepler problem (T ∗Ṙ4, dθ,H) is reduced to the MIC–Kepler
problem (T ∗Ṙ3, ωµ,Hµ), which admits constants of motion J and A given in (3.11), and has
orbits of conic sections in the configuration space Ṙ3.

4. The Poincaré compactification of the conformal Kepler problem

The Hamiltonian H of the conformal Kepler problem is not a polynomial, so that one cannot
apply the Poincaré compactification method to the associated Hamiltonian vector field XH .
However, if we fix an energy value, say h, of the conformal Kepler problem, and if we consider
the Hamiltonian defined and expressed as

K := 4r(H − h) = 1
2

4∑
j=1

η2
j − 4h

4∑
j=1

ξ 2
j − 4κ (4.1)

instead of H , we can apply the Poincaré compactification method to K . We note here that r
stands for the squared radius (see (3.6)). We also note that the Hamiltonian vector fields, XH
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and XK , associated with H and K , respectively, share trajectories up to parameters. In fact,
we obtain 4rXH = XK on the energy manifold K−1(0) = H−1(h). Since we are interested
in trajectories coming from or going to infinity, we assume that h is a non-negative constant.

On setting

ξj = yj

y9
ηj = y4+j

y9
j = 1, . . . , 4 (4.2)

the extended function K̃ defined in the same manner as in (2.9) takes the form

K̃ = 1
2

4∑
j=1

y2
4+j − 4h

4∑
j=1

y2
j − 4κy2

9 . (4.3)

Then the equations of motion (2.10) with H̃ replaced by K̃ are expressed, on S8, as

dyj
dt

= y4+j + λyj

dy4+j

dt
= 8hyj + λy4+j j = 1, . . . , 4

dy9

dt
= λy9

(4.4)

where

λ = −(8h + 1)
4∑

j=1

yjy4+j .

From definition (2.9), K = 0 and K̃ = 0 defines the same level sets in S8 but outside S7, where
S7 is the equator of S8 defined by y9 = 0. Since K̃−1(0) is invariant under the flow of (4.4),
all trajectories y(t) in K−1(0) ⊂ K̃−1(0) tend to infinity S7, as t → ±∞. Furthermore, since
every trajectory of the Hamiltonian vector field XK with h > 0,

ξj (t) = aje
√

8ht + bje−√
8ht ηj (t) =

√
8h(aje

√
8ht − bje−√

8ht ) (4.5)

has a fixed direction in R8 as t → ±∞, the corresponding trajectory y(t) in S8 will go to an
equilibrium point in the equator S7.

Since S7 is also invariant under the flow of (4.4), we can consider the intersection
K̃−1(0) ∩ S7 as an invariant set at infinity, which turns out to be expressed as

E∞
h :=

{
y ∈ R9

∣∣∣∣
4∑

j=1

y2
j = 1

8h + 1
,

4∑
j=1

y2
4+j = 8h

8h + 1
, y9 = 0

}
. (4.6)

This shows thatE∞
h

∼= S3×S3, ifh > 0. The equilibrium points to which the above-mentioned
trajectories y(t) tend are in E∞

h . From (4.4), the set of equilibrium points for X̃K in E∞
h for

h > 0 is determined by

yj = − λ

8h
y4+j y4+j = −λyj j = 1, . . . , 4. (4.7)

This implies that λ = ±√
8h. Thus we obtain the set of equilibrium points at infinity, which

consists of two connected components both diffeomorphic with S3:

S3
ε =

{
y ∈ R9

∣∣∣∣
4∑

j=1

y2
j = 1

8h + 1
, y4+j = ε

√
8hyj , j = 1, . . . , 4, y9 = 0

}
ε = ±.

(4.8)
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From (4.2) and (4.5), one has
y4+j (t)

yj (t)
−→ ±

√
8h as t → ±∞. (4.9)

This implies that the trajectories y(t) lying in S8 but outside S7 tend to or leave from S3
ε ,

depending on whether ε = + or −.
We can show further that S3

+ and S3
− are stable and unstable, respectively, in the sense of

linearization of X̃K . To see this, we take the tangent plane to S8 at a point (1, 0, . . . , 0) of
the equator S7. The central projection of S8 to this tangent plane defines a local coordinate
system in the open set U1 = {y ∈ S8|y1 > 0} or in the open set V1 = {y ∈ S8|y1 < 0}. Take
the local coordinates (z1, . . . , z8) defined by zi = y1+i/y1, i = 1, . . . , 8. Then the equations
of motion (4.4) are put in the form

dzk
dt

= z4+k − zkz4
dz4

dt
= 8h − z2

4

dz4+k

dt
= 8hzk − z4+kz4

dz8

dt
= −z8z4

k = 1, 2, 3. (4.10)

A straightforward calculation shows that the Jacobian matrix of the vector field (4.10) evaluated
at any point of S3

ε has eigenvalues 0, −2ε
√

8h, −ε
√

8h with ε = ±1. While one has the
eigenvalue 0, the associated eigenspace proves to be the tangent space to S3

ε at the point of
evaluation. Thus we see that S3

ε is stable or unstable, depending on whether ε = + or −. We
note here that the eigenspaces associated with −ε

√
8h and with −2ε

√
8h are transversal to

and tangent to the equator, respectively.

Proposition 3. The conformal Kepler problem of a positive energy is Poincaré compactified
through the function-collinear change of Hamiltonian vector fields, 4rXH = XK , on the energy
manifold H−1(h) = K−1(0). The Poincaré compactified vector field X̃K has a stable and an
unstable equilibrium point set S3

ε , given in (4.8), at infinity.

5. The Poincaré compactification of the MIC–Kepler problem

Thus far we have Poincaré compactified the conformal Kepler problem through the function-
collinear change of the Hamiltonian vector fields, 4rXH = XK , and thereby found the stable
and the unstable equilibrium point sets S3

ε at infinity. Now we are in a position to discuss the
behaviour of the MIC–Kepler problem at infinity by projecting the trajectories of the conformal
Kepler problem at infinity. After finding a stable and an unstable equilibrium point set at infinity
for the MIC–Kepler problem, we will show that the trajectories of positive energy determine
a map from the unstable equilibrium point set to the stable equilibrium point set.

From (3.5) and (4.2), points y in S8 but outside the equator S7 project to(
q1

q2

q3

)
= 1

y2
9

( 2(y1y3 + y2y4)

2(−y1y4 + y2y3)

y2
1 + y2

2 − y2
3 − y2

4

)
(5.1)

(
p1

p2

p3

)
= 1

2
∑4

j=1 y
2
j

(
y1y7 + y2y8 + y3y5 + y4y6

−y1y8 + y2y7 + y3y6 − y4y5

y1y5 + y2y6 − y3y7 − y4y8

)
. (5.2)

Let y(t) be a trajectory which has the limit point y ∈ S3
± as t → ±∞. Then it follows

from (4.8), (5.1) and (5.2) that the projected trajectory (q(t),p(t)) satisfies

1

r(t)

(
q1(t)

q2(t)

q3(t)

)
→ (8h + 1)

( 2(y1y3 + y2y4)

2(−y1y4 + y2y3)

y2
1 + y2

2 − y2
3 − y2

4

)
(5.3)
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p1(t)

p2(t)

p3(t)

)
→ ε

√
8h

2
(8h + 1)

( 2(y1y3 + y2y4)

2(−y1y4 + y2y3)

y2
1 + y2

2 − y2
3 − y2

4

)
(5.4)

where use has been made of r = ∑4
j=1 y

2
j /y

2
9 . Equations (5.3) and (5.4) imply that the scaled

trajectory (q(t)/r(t),p(t)) ∈ R6 goes to the equilibrium set, as t → ±∞,

S2
ε =

{
x ∈ R6

∣∣∣∣
3∑

k=1

x2
k = 1, x3+k = ε

√
8h

2
xk, k = 1, 2, 3

}
ε = ± (5.5)

which are clearly diffeomorphic with S2. The sets S2
ε are looked upon as the reduced space

from S3
ε through the SO(2) reduction as follows. The SO(2) action (3.2) is naturally extended

to that on S8:
(y1 + iy2, y3 + iy4) �→ eit (y1 + iy2, y3 + iy4)

(y5 + iy6, y7 + iy8) �→ eit (y5 + iy6, y7 + iy8)

y9 �→ y9.

(5.6)

Since S3
ε with ε = ± are invariant under this action, we can take the factor space S3

ε /SO(2),
which can be realized, in view of (5.1) and (5.2), as(

x1

x2

x3

)
= (8h + 1)

( 2(y1y3 + y2y4)

2(−y1y4 + y2y3)

y2
1 + y2

2 − y2
3 − y2

4

)
(5.7)

(
x4

x5

x6

)
= 8h + 1

2

(
y1y7 + y2y8 + y3y5 + y4y6

−y1y8 + y2y7 + y3y6 − y4y5

y1y5 + y2y6 − y3y7 − y4y8

)
. (5.8)

Since y ∈ S3
ε , equations (5.7) and (5.8) result in (5.5).

We now wish to discuss the relation between S2
+ and S2

−. These sets are viewed as
equilibrium sets at infinity, which are linked together through trajectories (q(t),p(t)). Since
trajectories are determined by the constants of motion, J and A, we may assume that the
constants of motion link S2

+ and S2
−. In what follows, we are working in the configuration

space Ṙ3. Let q(t)/r → aε as t → ±∞. Then equations (5.3) and (5.4) show that
p(t) → ε

√
2haε. Thus we observe that the trajectory leaves from infinity in the direction

of a− with the momentum −√
2ha− and finally tends to infinity in the direction of a+ with

the momentum
√

2ha+. This fact allows the following physical interpretation: since the orbit
q(t) is a hyperbola in the case of positive energy, the unit vector q(t)/r will have a definite
direction as t → ±∞, which is denoted by aε with ε = ±∞. Moreover, since q(t)/r has a
definite direction, the momentum p(t) will have the same direction as a+ if t → ∞ and the
direction opposite to a− if t → −∞, so that one has p(t) → εcaε as t → ±∞, where c is a
positive constant. The c can be calculated by the use of the energy conservation which holds
at infinity as well, h = 1

2 |caε|2, with the result that c = √
2h.

Since the constants of motion are conserved along the trajectory, we may take the limit of
A as t → ±∞. Thus we obtain, from (3.11),

A = J × (ε
√

2haε) + κaε. (5.9)

We denote by R the vector space isomorphism of R3 with so(3), the Lie algebra of SO(3),

R(u) =
( 0 −u3 u2

u3 0 −u1

−u2 u1 0

)
u ∈ R3. (5.10)

Then equation (5.9) yields

A = (κI +
√

2hR(J))a+ = (κI −
√

2hR(J))a−. (5.11)
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This results in

a+ =
(
I +

√
2h

κ
R(J)

)−1 (
I −

√
2h

κ
R(J)

)
a−. (5.12)

We observe further that for h > 0 the matrix on the right-hand side (5.12) gives rise to a Cayley
transform so(3) → SO(3) (for a Cayley transform, see [8], for example):

√
2h

κ
R(J) �−→ S(J) :=

(
I +

√
2h

κ
R(J)

)−1 (
I −

√
2h

κ
R(J)

)
. (5.13)

Summing up the above discussion, we have the following theorem.

Theorem 4. For a fixed positive energy, the infinity of trajectories of the MIC–Kepler problem
can be compactified to be the disjoint union of a stable and an unstable equilibrium point set,
denoted by S2

+ and S2
−, respectively, both of which are diffeomorphic with S2. Hyperbolic orbits

determine a map of S2
− to S2

+, which is expressed as the rotation matrix S(J) given in (5.13).
Moreover, the map (5.13) provides a Cayley transform so(3) → SO(3), where so(3) is viewed
as a space of the angular momentum.

The rotation matrix S(J) may be called a scattering matrix. To describe S(J) in the
explicit form, we take a coordinate system in R3 in such a way that J = (0, 0, |J |). Then the
matrix S(J) is put in the form

S(J) = 1

1 + 2h
κ2 |J |2


 1 − 2h

κ2 |J |2 2
√

2h
κ

|J | 0

− 2
√

2h
κ

|J | 1 − 2h
κ2 |J |2 0

0 0 1 + 2h
κ2 |J |2


 . (5.14)

Here, we set

cos 2χ = 1 − 2h
κ2 |J |2

1 + 2h
κ2 |J |2 sin 2χ =

2
√

2h
κ

|J |
1 + 2h

κ2 |J |2 . (5.15)

Then equation (5.14) implies that S(J) is a matrix describing a rotation about J = |J |e3 by
the angle 2χ . We note here that though S(J) is a rotation matrix satisfying a+ = S(J)a−,
the angle 2χ is not the angle between a− and a+ in the plane on which the orbit lies. Let us
introduce here the projection operator P by

Px = x −
(

x · J

|J |
)

J

|J | x ∈ R3. (5.16)

Since S(J)J = J , we can show that

S(J)Pa− = Pa+ (5.17)

which means that the angle 2χ is the angle between Pa− and Pa+ in the plane perpendicular
to J . Introducing here the angle θs := π − 2χ , we obtain the relation

cot
θs

2
= tan χ =

√
2h

κ
|J |. (5.18)

For µ = 0, this formula reduces to a well known formula for the scattering angle of the Kepler
problem [9].
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